
High Perform
ance

INSIGHT Volume 5 . Issue 3 . 200021

By Henrik Liebau, Agilent Technologies Deutschland GmbH

I/O System and Chip Verification in PCI
and PCI-X Systems
The complexity of high-performance systems leads to difficult verification.

Validation of computer systems and sub-
systems is becoming increasingly com-
plex as I/O systems and peripherals
become more intelligent. The role of
data-transfer initiator is being delegated
to the I/O systems instead of the CPU,
causing data traffic to move in several
directions simultaneously and freeing
the CPU for data-processing tasks.
Increasing bandwidth needs require per-
formance optimization in the subsys-
tems, further increasing the complexity
of the whole system.

Validation of these systems is a criti-
cal stage in the product development
cycle, and is becoming a very com-
plex task. First, you need to verify
that all the different subsystems work
individually. Then you must verify that
the subsystems cooperate when inte-
grated into the system. What is
required in this demanding environ-
ment are tools that can generate peak-
load conditions, show system behav-
ior, stress the system, and validate
that the system meets all standards.

A look at modern system structure
highlights the problems involved in
validation of these systems. Modern
servers and workstations comprise
various I/O systems, which connect
the different peripherals (storage,
network, graphics) and low-speed
devices (keyboard, serial communica-
tions) to the system (Figure 1).

CPU CPU CPU

Frontside Bus

PCI Secondary Bus 2

PCI Secondary Bus 4PCI Secondary Bus 3

Memory Bus
System
Memory

Video
I/O

Devices

PCI/
SCSI

Bridge

PCI/
PCI

Bridge

PCI/
PCI

Bridge

PCI/
PCI

BridgeNIC
Adapter

TapeDisk

Host
Bridge

PCI Peer Primary Bus 0 PCI Peer Primary Bus 1

Figure 1. The complexity of modern system structure highlights the problems involved in validation of these systems.

INSIGHT Volume 5 . Issue 3 . 2000 22

Validation Challenge

With all these complexities to cope
with, validating systems becomes
truly challenging. It is necessary to
test systems and subsystems under
real-life conditions, while ensuring
that corner-cases are covered. It is
also necessary to confront the system
under test (SUT) with all possible
combinations of traffic and to gener-
ate peak-load conditions so that the
system is stressed to the maximum.

Theoretically, this can be achieved by
testing all possible system configura-
tions with every type of hardware that
can conceivably be inserted. For a
server system this basically means to
load it up with all off-the-shelf prod-
ucts available and connect it to a huge,
busy network. To guarantee full cover-
age, this would have to be repeated
over and over, with varying configura-
tions. In practical terms, this test
approach is not possible due to prohib-
itive time constraints, not to mention
the cost involved. The only current
alternative is to decrease test coverage.

Another shortcoming of the brute-
force approach is lack of repro-
ducibility: When a problem is found
in the validation lab and the SUT
needs to go back to the R&D lab,
repeatability is an important issue.
The cause of a bug can only be found
if it can be conjured up consistently
with repeatable testing methods.

Among these I/O systems, the PCI
bus and its designated successor, the
PCI-X bus, have established a central
role. Their performance, configurabili-
ty, and scalability make them the
choice for all types of peripherals. The
ability for bus agents to actively initi-
ate transactions allows intelligent pro-
cessing to move to the subsystems and
relieves the CPUs in the system. For
both slot-based and on-board applica-
tions, PCI/PCI-X buses play the role of
a backbone in the system. Connected
to these “backbones” are several other
I/O systems, such as SCSI buses.
These are connected to the PCI/PCI-X
system through bridge devices.
PCI/PCI-X systems are emphasized
here, but the results are also valid for
other systems, including future tech-
nologies such as InfiniBand.

Going Parallel

Increasing bandwidth needs call for
parallel-processing approaches, so
servers and workstations contain sev-
eral CPUs, numerous storage devices,
and several network interface cards.
To accommodate these components,
multiple I/O buses are built into the
system; they are organized hierarchi-
cally and/or using peer architecture.
The sample system shown in Figure 1

contains two PCI-X peer buses
(0 and 1) and one subsequent PCI
bus (2). The combined architecture
using both PCI and PCI-X buses is typ-
ical, accommodating both state-of-the-
art and legacy devices.

With initiators residing anywhere in
the system, data traffic patterns
become highly unpredictable. This
leads to several problems. Traffic in
the system becomes non-determinis-
tic, depending on many external fac-
tors such as network activity, disk-
drive accesses, and CPU utilization.
Traffic moves in several directions
simultaneously, and with the new
split-transaction scheme in PCI-X
systems, the traditional initiator/tar-
get roles get reversed dynamically.
Cache controllers face coherency
problems when cached memory is
accessed from more than one direc-
tion. Bridge devices, which connect
similar or different subsystems (such
as PCI-X/PCI-X or PCI/SCSI bridges),
are confronted with simultaneous
requests from all sides.

The insertion of new peripherals into
a system brings new problems as new
event patterns are introduced and
system behavior is changed accord-
ingly. Further adding to this complexi-
ty is the possibility that new devices
may be introduced in the future,
uncovering yet untested scenarios by
behaving differently than previously
tested devices. Problems that arise
from the addition of new peripherals
may never occur in day-to-day opera-
tion, but could cause a system to fail
in extraordinary situations, such as
peak-load conditions or rare combina-
tions of events.

Chips &
 Circuits

High Performance

INSIGHT Volume 5 . Issue 3 . 200023

sometimes even for different versions
of a device. Testing may be done in a
complete functional system, but the
focus lies in testing individual devices.

For system-level testing, data integri-
ty and stability must be ensured along
all data paths that are available in the
system. The testing must guarantee
that, even under peak-load condi-
tions, no single bit gets lost along the
way. In contrast to functional-level
tests, system-level tests concentrate
on load and protocol variation, and
can be more standardized. They can
be reused in any new system to make
sure known problems found in older
systems don’t occur in the new sys-
tem. The focus for system-level test-
ing lies more on the data paths rather
than on the individual devices.

One step further is the clustering of
several systems. Tests on this level are
as extensive as the ones at the system
level, with the added complexity of
intersystem communication. The test-
card approach enables testing at all
three levels using the same tools.

Test Cards

A test card is a device that is used
specifically for testing. It is designed
for a specific slot- or cable-based I/O
system—PCI, PCI-X, or others—and
operates like any other device
designed for that system. It can allo-
cate system resources (such as mem-
ory space or I/O space), and can act
as initiating agent if the I/O system
allows it to do so. The test card can
generate any type of traffic that is
allowed and also can react to any
transaction initiated somewhere else.

The test card has an external inter-
face, so it can be controlled with an
external controlling host, making it
independent of the type of system
and the operating system used. When
used with an “internal” connection
(directly from the SUT), it is possible
to coordinate tests using the test card
with other test tools or programs.

Using these test-card features, you
can generate data traffic along any
data path that is accessible by a con-
nector. A bridge can be tested and
stressed by placing two cards on
either side of the bridge (Figure 2).
Programming the test card to commu-
nicate directly with a device is a way
to test that device. Because the traffic
generated by the test card can be pro-

Meeting the Challenge

How can a validation engineer ensure
that his products are well tested, cor-
ner-cases are covered, and the time
spent is within reasonable limits? The
solution is a combination of test cards
and software running on the SUT. To
explain this solution, a closer look at
the testing cycle for a system is in
order. During system integration three
basic stages of testing can be distin-
guished: functional (chip) level, system
level, and cluster integration testing.

Functional-level testing, which
ensures correct operation of single
subsystems, requires short, focused
tests. They are handcrafted and
designed to test special functional
aspects of the device under test
(DUT). Functional-level tests need to
be adapted for every new device,

CPU CPU CPU

Frontside Bus

PCI Secondary Bus 2

PCI Secondary Bus 4PCI Secondary Bus 3

Memory Bus

System
Memory

Video
I/O

Devices

PCI/
SCSI

Bridge

PCI/
PCI

Bridge

PCI/
PCI

Bridge

PCI/
SCSI

BridgeNIC
Adapter

TapeDisk

Host Bridge

PCI Peer Primary Bus 0 PCI Peer Primary Bus 1

Host
Bridge

Testcard Testcard Testcard

Testcard

C

B

A

D

E

PCI/
PCI

Bridge

Figure 2. Using test cards, you can generate data traffic along any data path that is accessible by a connector. A bridge can be tested and stressed by placing two cards
on either side of the bridge.

INSIGHT Volume 5 . Issue 3 . 2000 24

High Performance

grammed directly, it is also complete-
ly repeatable, so generating repro-
ducible results is much easier.

In addition to this active or exercising
part of the test card, it is extremely
useful if the test card also has analyz-
ing capabilities. These include the
ability to monitor the transaction pro-
tocol, gather performance metrics,
and provide traces of the ongoing
transactions should something fail.
Together with the exerciser, the ana-
lyzer can detect data-integrity prob-
lems and protocol violations. It also
can generate trigger events for other
analyzing devices in the system to
provide a “snapshot” of the whole
system when a problem occurs in
only a part of the system.

The time-consuming swapping of
devices can be avoided by character-
izing existing devices and incorporat-
ing their behavior into a test suite,
and then simulating the DUT with a
test card.

Window into the System

A test card placed at a central posi-
tion within the system also can serve
as a window into the system. It can
read or write registers in system
memory or the system’s I/O space. It
can read or write the configuration
data of other devices including bridge
devices, and can dump the contents
of memory areas. This is possible
even when the system itself is no
longer operating because the CPU
subsystem has crashed or because
parts of the system are caught in a
live-lock or deadlock situation.

With its exercising and analyzing capa-
bilities, the test card is an ideal tool
for linking the test level to the debug
level. While trying to track down a bug
to its root cause, the engineer can use
the same tool for reproducing test
results and analyzing them. The R&D
and Validation labs can use the same
tools. This dual functionality of test
cards is also an asset when slots or
cables are limited and there is no
room to connect two different tools.
Before the test card approach, the
engineer often had to choose between
a test tool and an analyzing tool
because of system limitations.

Validation Framework

Some system validation procedures
cannot be accomplished by using test
cards alone. For example, the proces-
sor bus is normally not accessible in
the validation stage of the product
design cycle. Although it might be fea-
sible to use processor probes or emu-
lators at earlier stages in the design
process, using these tools when test-
ing a complete system is uncommon.
Conducting tests on the driver or soft-
ware level becomes impractical when
no real devices are used. These prob-
lems lead to the combined approach,
or “validation framework”.

The validation framework handles all
aspects of test-card testing—setup,
running, and analysis—along with
tests that can be written specifically
for devices that require CPU interac-
tion. All testing is handled by a single
piece of software, which has an appli-
cation programming interface (API)
that allows you to add new tests and
to configure existing ones for differ-
ent needs (Figure 3). User-defined

CPU CPU CPU

Frontside Bus

PCI Secondary Bus 2

PCI Secondary Bus 4PCI Secondary Bus 3

Memory Bus

System
Memory

Video
I/O

Devices

PCI/
SCSI

Bridge

PCI/
PCI

Bridge

PCI/
PCI

Bridge

PCI/
PCI

BridgeNIC
Adapter

TapeDisk

Host Bridge

PCI Peer Primary Bus 0 PCI Peer Primary Bus 1

CPU Test
Te

st
 In

te
rg

ra
ti

o
n

Periphial
Test

Storage
Test

Testcard
Control

Testcard

Testcard Testcard

Testcard Testcard Testcard

Testcard Testcard

Figure 3. By using appropriate test cards, a single piece of software allows you to easily test very complex systems.

INSIGHT Volume 5 . Issue 3 . 200025

tests for functional testing on specific
devices and more general tests for
system integration can be set up and
even mixed to “heckle” parts of the
system from several sides.

In earlier stages of validation, or in sys-
tems with uncommon operating sys-
tems, testing can be controlled from
outside the SUT using wire connec-
tions to the test cards, with only a
small stub program running on the
SUT. Later, when the environment
becomes more stable and mainstream
operating systems are used, the same
tests can be run and controlled directly
within the SUT, along with other tests.

When the system crashes or hangs,
the analyzing capabilities of the test
cards provide a quick way to check
the origin of the problem simply by
connecting the test cards from out-
side and reading the contents of the
trace memory. Using the proposed
validation-framework approach, mul-
tiple errors in several systems in dif-
ferent stages of the validation
process—from pre-beta to pre-
release—can be found in a matter of
minutes. The problems found range
from less-important protocol viola-
tions on the system buses up to com-
plete system crashes. With the analyz-
ing capability of the test cards, the
cause of the problem and the faulty
devices can be isolated easily.

Validating complex server and work-
station systems has become as com-
plex as the systems themselves. New
technologies such as PCI-X add to the
complexity. Engineers need tools that
help them characterize and validate
their system designs quickly. Using a
combination of test cards and specific
tests combined within a validation
framework has proven to be an
approach that can significantly
reduce testing time and improve the
overall reproducibility of the test
methods, allowing designers to meet
their time-to-market windows.

PCI and the higher-performance PCI-X technology pro-
vide a challenge when developing high-performance sys-
tems. These technologies are complex and difficult to ver-
ify and validate. The Agilent Technologies E2929A and
E2922A allow you to easily control PCI-X-based chipsets,
servers, server clusters, or other high-performance sys-
tems. You can then create repeatable test scenarios that
will properly evaluate your implementation.

The E2929A PCI-X exerciser/analyzer is fully compliant
with the 133-MHz PCI-X specification. It is a single-slot
card that features complete PCI-X state analysis, real-
time protocol checking, and real-time performance
measurement. The card offers a fully programmable
PCI-X master/target with completer and requester capa-
bilities. It also provides data memory, data generation,
real-time data comparison, and programmable configu-
ration space.

The E2922A PCI-X Master/Target Test Card is a dedicat-
ed PCI-X exerciser that provides a fast and predictable
way to set up the PCI-X traffic, verify PCI-X protocol
compliance, and verify the target chipsets where multi-
ple test cards per test setup are needed.

Agilent Technologies also provides a variety of meas-
urement and analysis solutions for PCI and PCI-X, with
the 16700A/B series of logic analyzers providing multi-
ple-bus analysis, cross-domain analysis, and timing
analysis.

For more information, check 4 on the reply card.

Verify PCI-X Systems with the Proper Tools

